

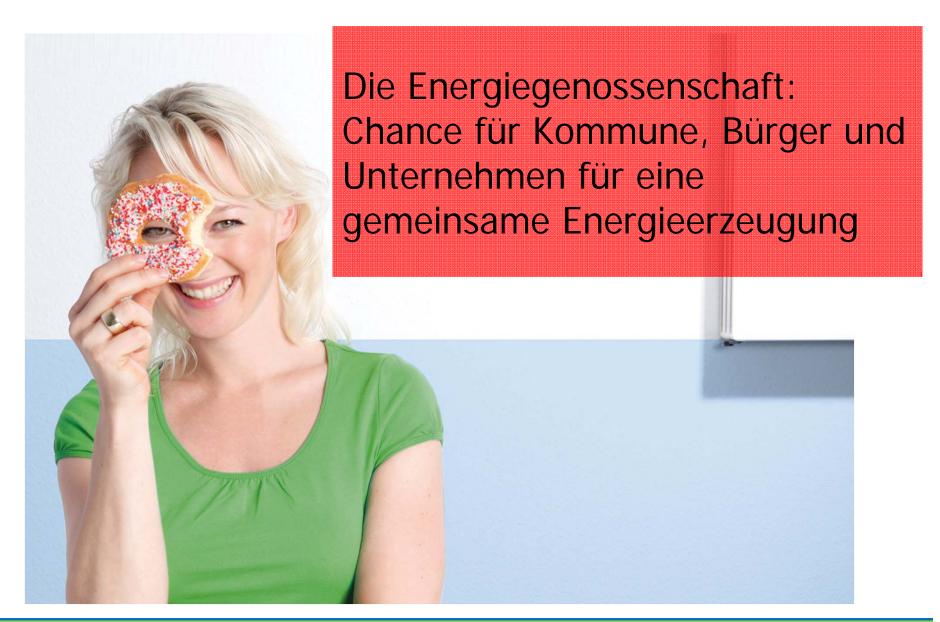
Nahwärmeversorgung in Mollhagen (aus Abwärme) = ein wesentlicher Baustein der Energiewende!!!

Die Energieeffizienz ist ein Maß für den (minimalen) End-Energieaufwand beim Verbraucher zur Erreichung eines festgelegten Nutzens (Minimalprinzip). Eine Steigerung der Energieeffizienz führt zu einer Energieeinsparung (aber nicht zwingend zur einer Kostenoptimierung).

Die **Gesamtenergieeffizienz** berücksichtigt **zusätzlich zum Endenergiebedarf** auch die Vorkette (Gewinnung, Verteilung, Umwandlung) der jeweils eingesetzten Energieträger (z. B. Heizöl, Gas, Strom, erneuerbare Energien etc.).

Die (Bürger)energiewende bezieht sich auf die Gesamtenergieeffizienz – immer vor dem Hintergrund einer Kostenoptimierung und einer Wertschöpfung vor Ort.

Infoveranstaltung – Nahwärmeversorgung Mollhagen


am 26. Januar 2016, Mollhagen

- Strategie und Terminplan
- Stand Genossenschaftsgründung
- Warum Genossenschaft
- ➤ Vorstellung Wärmekonzept
- ➤ Erläuterung der Wärmelieferverträge
- Sonstiges
- > Ausfüllen der Absichtserklärungen
- > Fragen und Antworten

IngenieurNetzwerk Energie eG
Matthias Partetzke / Thomas Oesterreich

Gemeinsam (Durch)starten

Wer ist die iNeG?

- Die iNeG ist ein genossenschaftlich geprägtes und organisiertes Unternehmen
- Unsere (43) Gesellschafter sind z. B.:
 Kreditinstitute, Produktions-, Waren- und Energie-eG s.
- 2007 gegründet auf Basis des ausgeprägten Kundenwunsches "sicherstellen einer neutralen Beratung"
- Die iNeG ist ein völlig unabhängiges Unternehmen. Daher ist sichergestellt, dass alle Beratungsleistungen neutral erbracht werden.

Unsere Leistungen

Beratung, Planung und Realisierung von:

EEG/ KWK-G-Anlagen

- ⊗ Photovoltaikanlagen
- ⊗ Biogasanlagen
- ⊗ Blockheizkraftwerke EEG/KWK-G
- ⊗ Nahwärmenetze
- ⊗ Windenergieanlagen "Bürgerwindpark"

Sanierung/ Modernisierung

- Trink- und Schwimmbadwasseraufbereitungsanlagen
- ⊗ Heiz-/ Lüftungszentralen
- ⊗ Wärmerückgewinnung aus Abwasser
- ⊗ Wärmeauskopplung
- ⊗ Lüftungs- und Klimatechnik
- ⊗ Meß- und Regelungstechnik

Seminare / Studien

- ⊗ Beschaffung von EEG-Brennstoffen
- Wohn- und Nicht-Wohngebäude: Energiepass
- Vertragsmanagement –Energiebezug/ Contracting
- ⊗ Studien und Energiekonzepte

Kunden

- ⊗ 63 Energiegenossenschaften
- ⊗ Industrie/ Gewerbe
- Städte/ Gemeinden
- ⊗ Stadtwerke
- ⊗ Landwirtschaft
- ⊗ Fachhochschulen

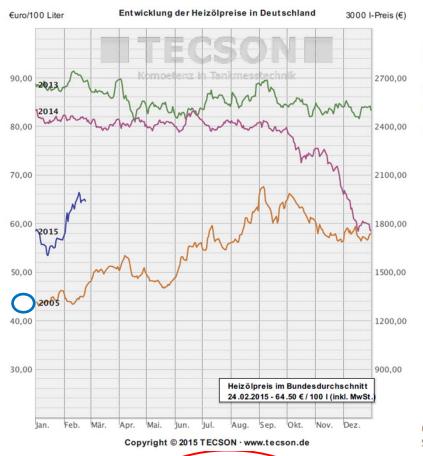
. . .

Kooperationspartner (Auszug)

meine-Energie eG

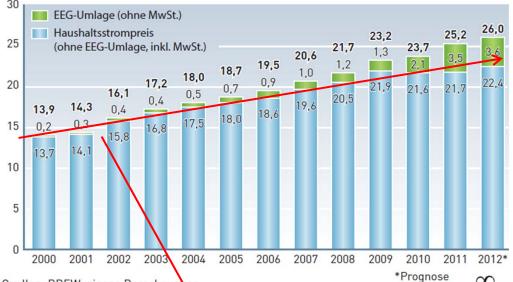
Strom-/ Gashandel!!!

> Neutrale Projektbewertung / -steuerung



Prüfen Beraten Bilden

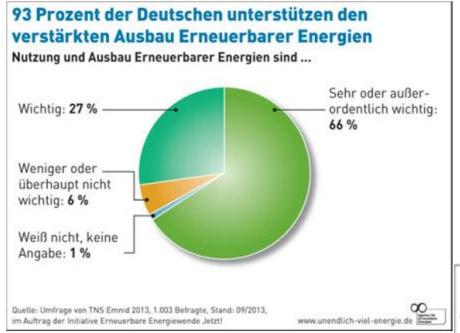
Preisentwicklung, Endkunde



Entwicklung der Haushaltsstrompreise und der EEG-Umlage in Deutschland

Die Strompreise für Haushalte sind in den vergangenen zwölf Jahren auch unabhängig von der EEG-Umlage stark gestiegen.

Quellen: BDEW, eigene Berechnungen

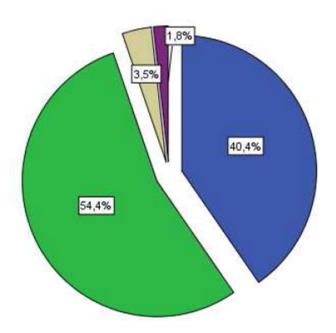

Stand: 5/2012

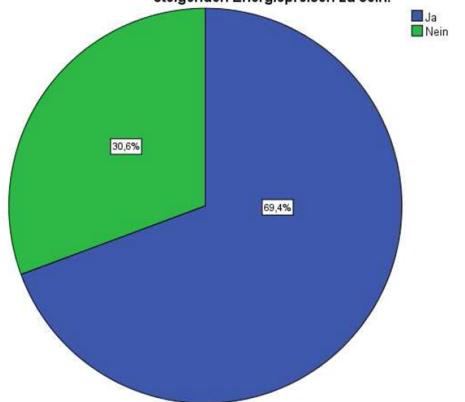
Konstante Energiekosten durch das EEG/ KWK-G?!

Kostensteigerung, ohne EEG bei gefallenen Erzeugungskosten!

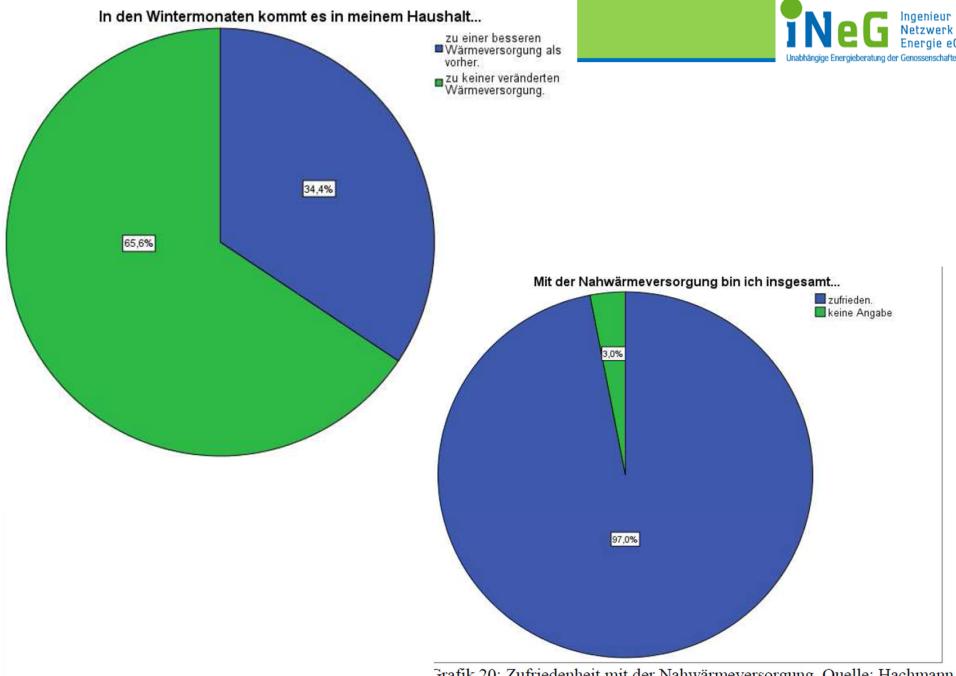
Was machen andere Gemeinden?

Wärmeversorgung auf Basis Holzhackschnitzel




☐ Ölheizung ☐ Gasheizung

■ Nachtspeicherheizung ■ Kohle/Holzofen

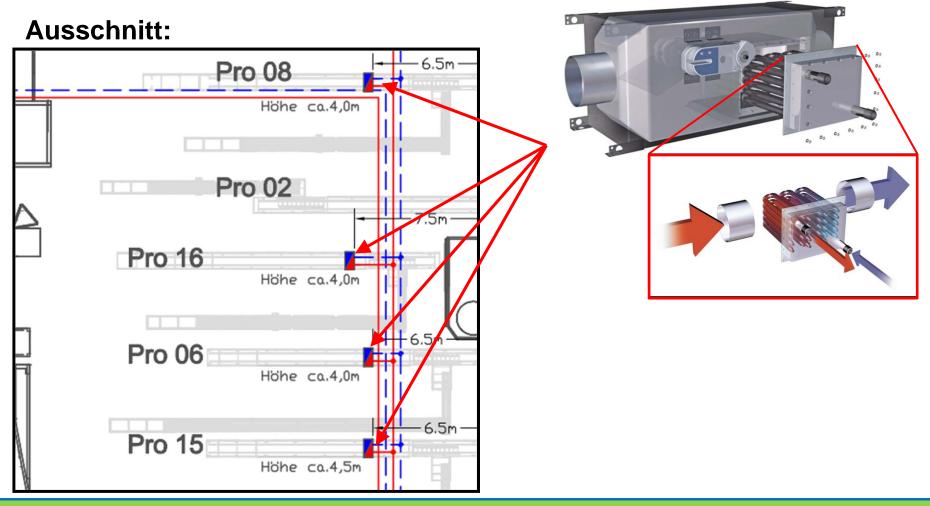


Ich habe mich an der Energiegenossenschaft beteiligt um unabhängig von den steigenden Energiepreisen zu sein.

Umfrage/Examensarbeit, Herr Hachmann Meschede-Wallen

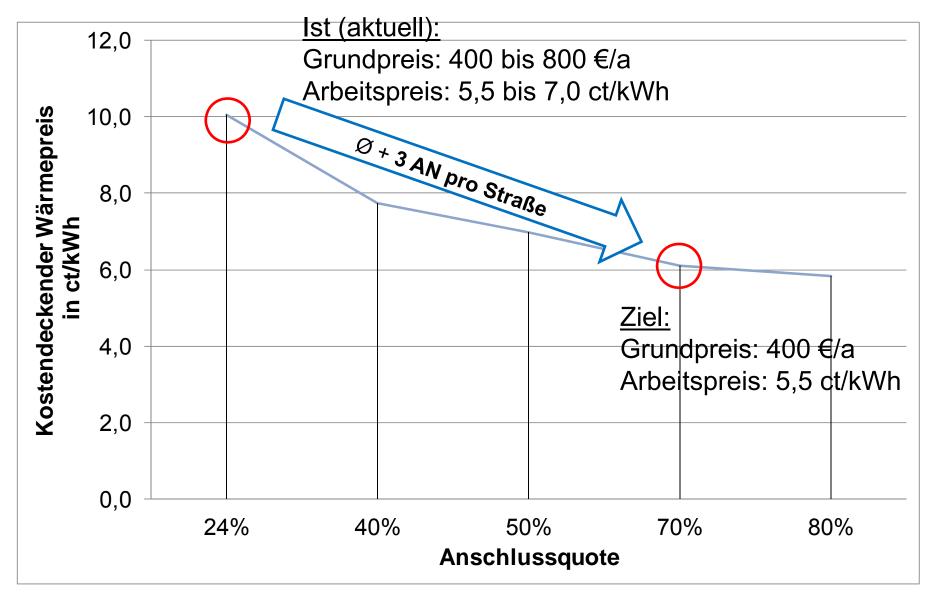
Grafik 20: Zufriedenheit mit der Nahwärmeversorgung. Quelle: Hachmann.

Die Basis: Abwärme "Waffel-Meyer"

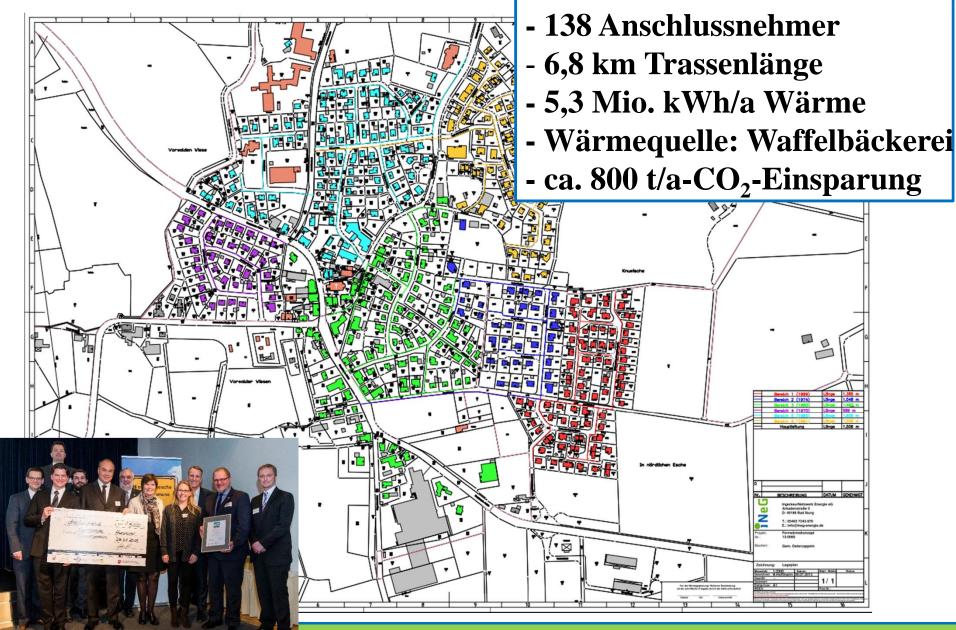


Mit der Abwärme aus einer Waffelproduktion werden 138 Wohnund Nicht-Wohngebäude ganzjährig mit Wärme versorgt.

Wärmeauskopplung



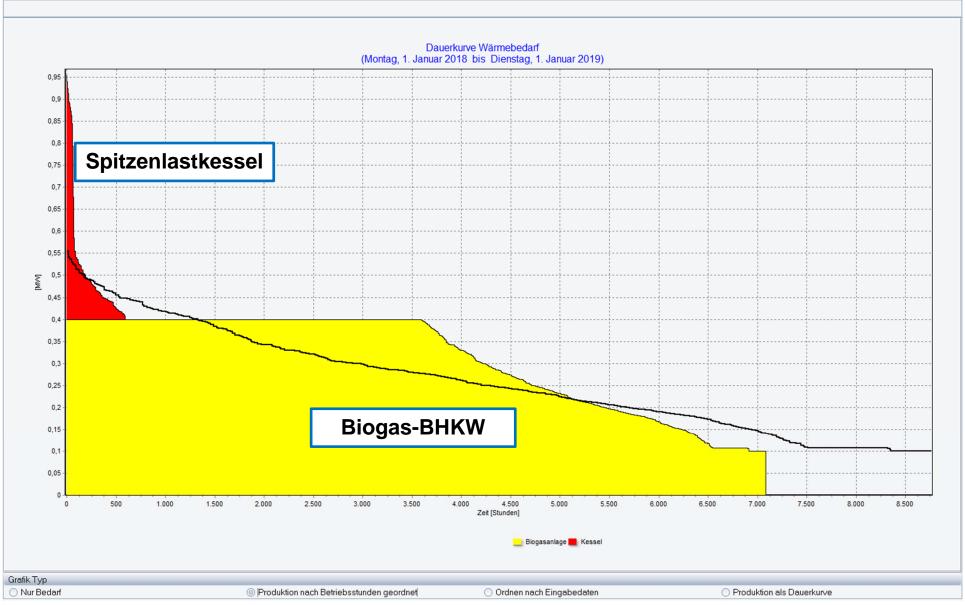
Abgaswärmetauscher


Gemeinsam mehr erreichen!

Abwärme aus Industrie wird für die Versorgung von Wohn- und Nichtwohngebäude genutzt

Mut beweisen!

den Startschuss setzen


- geeigneten Projektentwicklungs-Partner suchen
- hoher Aufwand in der Projektentwicklung Zeit investieren

- Umgang mit dem Privatvermögen des Nachbarn
 - = hoher Verantwortungsgrad

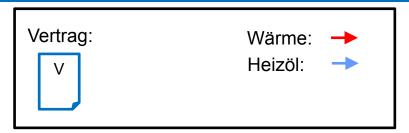
Jahreslastgang

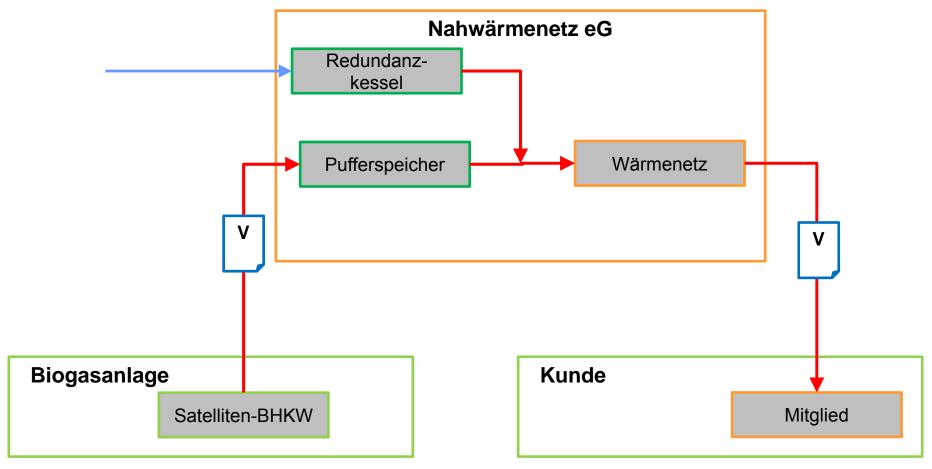
Vorteile für die "Genossen"

- ✓ Langfristig günstige(re) Energie weg von Heizöl oder Gas
- ✓ Verlässlicher Preis
- ✓ Nutzung umfangreicher Fördermittel
- ✓ Energieautarkie geringe Abhängigkeit
- ✓ Keine Kosten mehr für Schornsteinfeger, Heizungswartung oder Heizungsreparatur
- ✓ Besserer Energieausweis der Immobilie (besonders wichtig bei möglichem Verkauf)
- ✓ Zusätzlicher Kellerraum
- ✓ Hausanschlusskosten im Preis enthalten
- ✓ Mitgliedschaft und Mitsprache in einer Genossenschaft
- ✓ Wertschöpfung in der Region!!!

Vorteile für Steinburg / Mollhagen

- ✓ Stärkung der Gemeinschaft
- ✓ Günstige Energie durch Gemeinschaftskauf
- ✓ Stärkung des regionalen Wirtschaftskreislaufs
- ✓ Steigerung der Effizienz
- ✓ Nutzung Niedrigzins für ein Gemeinschaftsprojekt
- ✓ Gemeinsamer Klimaschutz > 300 Tonnen CO2 / Jahr
- ✓ Abruf von über 430.000,-€ Fördermittel
- ✓ Innovation vor Ort Attraktivität des Ortes steigern
- ✓ Projekt gegen Leerstand und Abwanderung
- ✓ Leerrohre für Breitbandanschlüsse


Projektstatus



Phase:	Aufgabe:	Ergebnis:	2015
Machbarkeits- studie	Bestandsaufnahme durchführenKonzept erstellen		
Vor- und	Machbarkeit prüfen	NWN-Konzept eG Gründung	2015
Entwurfsplanung	 Befragung der Anschlussnehmer 		
	Wärmelieferverträge abschließen Deteilliertes Konzent arstellen	->Heute	
2	Detailliertes Konzept erstellen	► Finanzierung	2016
Ausf.planung/ Ausschreibung	Detailplanung durchführenAusschreibung durchführenAufträge vergeben	→ Realisierung	2016
Realisierung	Bauarbeiten überwachenAbnahme durchführen		
4		→ Inbetriebnahme	Anf <mark>ang</mark> 2017

Schematische Projektübersicht

Mögliche Synergieeffekte

Innovativ durch gemeinsame Verlegung / Erdarbeiten

Nahwärmenetz

Die Glasfaserinfrastruktur dient im ersten Schritt zur Fernwartung der Übergabestation und in einem späteren Schritt wird hierüber ultraschnelles Internet (Breitbandversorgung) angeboten werden.

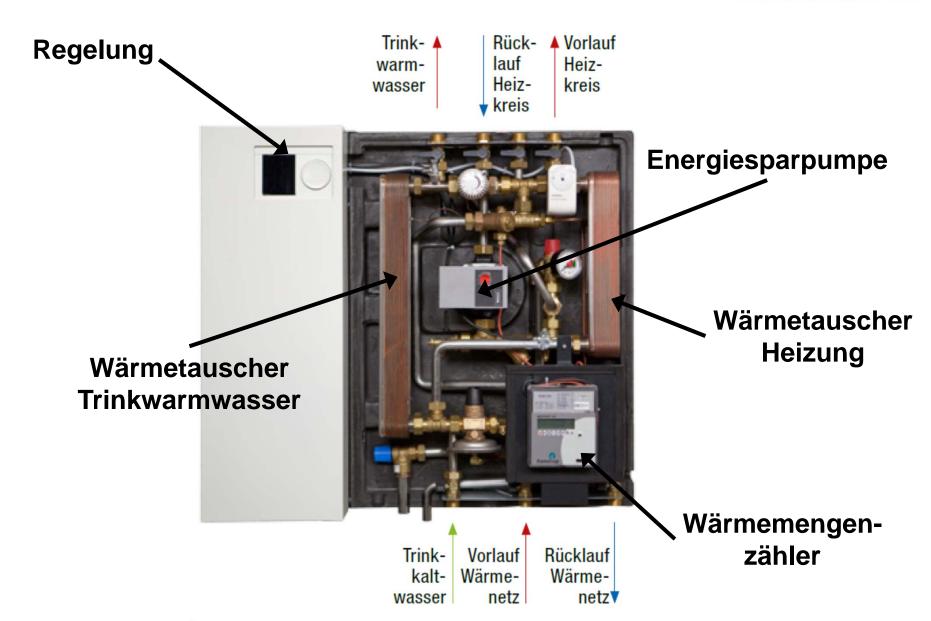
So kommt die Wärme zu Ihnen

Biogas-BHKW Spitzenlastkessel

Wärmeerzeuger

Rohrleitungen

Wärmemengenzähler

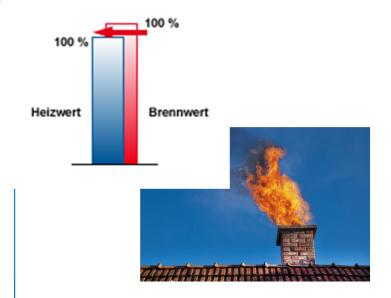

Hausstation

100% des Wärmebedarfes durch Ölkessel und Biogas-BHKW gedeckt Durch die Rohrleitung wird die Wärme in Form von Heißwasser transportiert. Die tatsächlich abgenommene Wärme wird über einen geeichten Wärmemengenzähler gemessen.

Diese Anlage ersetzt die Heizung. Thermische Solaranlagen können weiterhin genutzt werden

Übergabestation im Detail (Bsp.)

Investitionskosten und Finanzierung


Investitionskapitalbedarf gesamt	EUR 1.457.000	
Technische Ausrüstung		175.000
 Pufferspeicher 		
 Spitzenlast- und Redundanzkessel 		
Fernwärmeleitungen und Übergabestationen	EUR	1.112.000
Baunebenkosten		170.000

<u>Finanzierung</u>		
Mitgliedsbeitrag/Eintrittsgeld der Anschlussnehmer:	EUR	210.000
Förderung KfW oder KWKG/ Bafa:		430.000
 pro Trassenmeter = 60 €/m 		
 pro Hausanschluss = 1800 € 		
<u>Finanzierung</u>	<u>EUR</u>	<u>817.000</u>

Wärmepreisvergleich

- Nahwärme = 100 % Nutzwärme!
- Ø Umwandlungsverlust herkömmlicher
 Heizungen ≈ 15% 30%
- Umrechnungsfaktor Heizwert/ Brennwert 1,11(Erdgas)

Bsp:

Gas: 5,1 ct/kWh * 1,11 / 85%

Öl: 55ct/l /10kWh/l / 85%

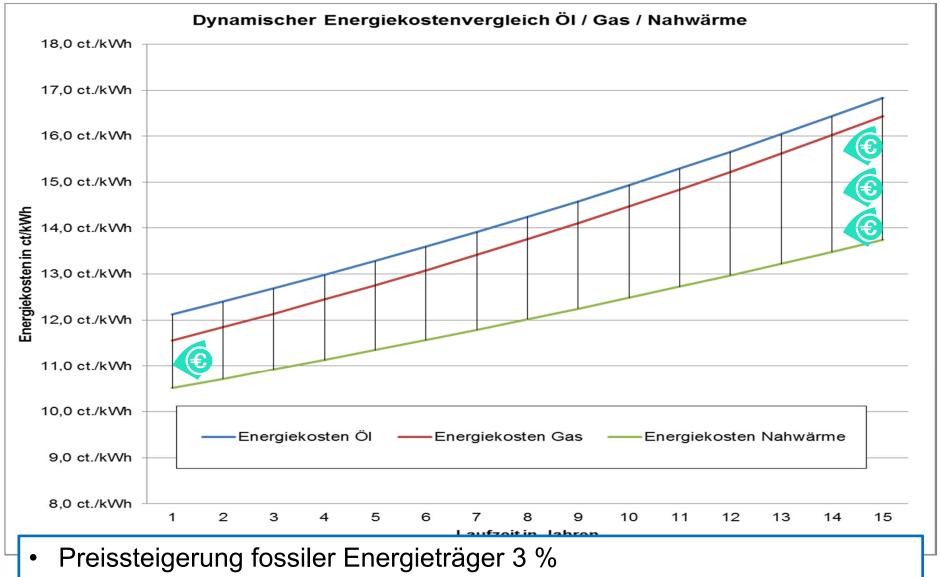
Nahwärme:

Nutzwärme

= 6,6 ct/kWh

= 6,5 ct/kWh

= 6,5 ct/kWh


Beispielrechnung für EFH

		_	Unabhängige Energiebe	ratung der Genossenschaft
	Heizöl I/HEL	Erdgas (kWh)	Fernwärme	
Wohnfläche m²				
Brennstoffeinsatz (Hs)	2941 L HEL	32647 kWh		
Energieinhalt	10	0,90		
Brennstoffeinsatz (Hi)	29412 kWh	· ·		
Jahresnutzungsgrad	85%	85%		
Nutzwärme	25000 kWh	25000 kWh	25000 kWh	
Energiekosten				
Grundkosten (netto)		120 EUR/a	700 EUR/a	
Steuerfrei Warenrück <i>v</i> ergütung, Prognose		120 20110		300 €= möglid
Leistungskosten (netto)				J
Arbeitspreis (netto)	55 ct./l HEI	5,1 ct./kWh	6,5 ct./kWh	
Arbeitskosten (netto)	1607 EUR/a	1668 EUR/a	1625,0 EUR/a	
Stromkosten Heizung (Gebläse / Brenner / Primärven	250 EUR/a	150 EUR/a		
Wartung	200 EUR/a	120 EUR/a	Wartung in den Grundkosten enthalten	
Schornsteinfeger	70 EUR/a	70 EUR/a		
Jahresheizkosten	2127 EUR/a	2128 EUR/a	2125 EUR/a	
nvestition	5300 EUR/a	4000 EUR/a	2000 EUR/a	
Nutzungsdauer	15 Jahre			
Abschreibung	353 EUR/a			
3				
Vollkostenrechnung				
Gesamtkosten (netto)	2480 EUR/a	2395 EUR/a	2192 EUR/a	
MwSt.	471 EUR/a	455 EUR/a	416 EUR/a	
Gesamtkosten (brutto)	2951 EUR/a	2850 EUR/a	2608 EUR/a	
Durchschnittlicher Wärmepreis	11,8 ct./kWh	11,4 ct./kWh	10,4 ct./kWh	
Ihr Vorteil bei Öl im ersten Jahr	,	343 EUR/a	,	
Ihr Vorteil bei Gas im ersten Jahr	242 EUR/a			
		Z-TZ E-OTA/d		

Einsparungen 15 Jahres-Prognose

Wollen Sie Projekte entwickeln? Sprechen Sie mit uns:

Matthias Partetzke / Thomas Oesterreich

IngenieurNetzwerk Energie eG

Arkadenstraße 5 · 49186 Bad Iburg

Tel.: 05403 7243970 · Fax: 05403 7243989

info@ineg-energie.de · www.ineg-energie.de